1,896 research outputs found

    Global/local stress analysis of composite panels

    Get PDF
    A method for performing a global/local stress analysis is described, and its capabilities are demonstrated. The method employs spline interpolation functions which satisfy the linear plate bending equation to determine displacements and rotations from a global model which are used as boundary conditions for the local model. Then, the local model is analyzed independent of the global model of the structure. This approach can be used to determine local, detailed stress states for specific structural regions using independent, refined local models which exploit information from less-refined global models. The method presented is not restricted to having a priori knowledge of the location of the regions requiring local detailed stress analysis. This approach also reduces the computational effort necessary to obtain the detailed stress state. Criteria for applying the method are developed. The effectiveness of the method is demonstrated using a classical stress concentration problem and a graphite-epoxy blade-stiffened panel with a discontinuous stiffener

    X-Ray Timing, Spectroscopy and Photometry of the Anomalous X-Ray Pulsar Candidate CXOU J010043.1-721134

    Full text link
    We present new X-ray timing and spectral results on the 8.0-second X-ray pulsar CXOU J010043.1-721134 from a series of observations using the Chandra X-ray Observatory. We find a spin period in 2004 January of 8.020392pm0.000009 seconds. Comparison of this to 2001 Chandra observations implies a period derivative dot{P} = (1.88 pm 0.08) times 10^{-11} s s^{-1}, leading to an inferred dipole surface magnetic field of 3.9 times 10^{14} G. The spectrum is well fit to an absorbed blackbody of temperature kT = 0.38pm0.02 keV with a power law tail of photon index Gamma = 2.0pm0.6. We find that the source has an unabsorbed X-ray flux (0.5-10 keV) of 4(+2-1) times 10^{-13} erg cm^{-2} s^{-1} and a corresponding X-ray luminosity of ~2 times 10^{35} erg s^{-1} for a distance of 60 kpc. These properties support classification of CXOU J010043.1-721134 as the seventh confirmed anomalous X-ray pulsar,the eleventh confirmed magnetar, and the first magnetar to be identified in the Small Magellanic Cloud.Comment: 5 pages, plus 1 embedded eps figure. Refined coordinates of source, including typo in declination. ApJ Letters, in pres

    ARMD Workshop on Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation

    Get PDF
    This report documents the goals, organization and outcomes of the NASA Aeronautics Research Mission Directorates (ARMD) Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation Workshop. The workshop began with a series of plenary presentations by leaders in the field of structures and materials, followed by concurrent symposia focused on forecasting the future of various technologies related to rapid manufacturing of metallic materials and polymeric matrix composites, referred to herein as composites. Shortly after the workshop, questionnaires were sent to key workshop participants from the aerospace industry with requests to rank the importance of a series of potential investment areas identified during the workshop. Outcomes from the workshop and subsequent questionnaires are being used as guidance for NASA investments in this important technology area

    Interface Technology for Geometrically Nonlinear Analysis of Multiple Connected Subdomains

    Get PDF
    Interface technology for geometrically nonlinear analysis is presented and demonstrated. This technology is based on an interface element which makes use of a hybrid variational formulation to provide for compatibility between independently modeled connected subdomains. The interface element developed herein extends previous work to include geometric nonlinearity and to use standard linear and nonlinear solution procedures. Several benchmark nonlinear applications of the interface technology are presented and aspects of the implementation are discussed

    Global/local stress analysis of composite structures

    Get PDF
    A method for performing a global/local stress analysis is described and its capabilities are demonstrated. The method employs spline interpolation functions which satisfy the linear plate bending equation to determine displacements and rotations from a global model which are used as boundary conditions for the local model. Then, the local model is analyzed independent of the global model of the structure. This approach can be used to determine local, detailed stress states for specific structural regions using independent, refined local models which exploit information from less-refined global models. The method presented is not restricted to having a priori knowledge of the location of the regions requiring local detailed stress analysis. This approach also reduces the computational effort necessary to obtain the detailed stress state. Criteria for applying the method are developed. The effectiveness of the method is demonstrated using a classical stress concentration problem and a graphite-epoxy blade-stiffened panel with a discontinuous stiffener

    Out of the frying pan: a young pulsar with a long radio trail emerging from SNR G315.9-0.0

    Full text link
    The faint radio supernova remnant SNR G315.9-0.0 is notable for a long and thin trail that extends outward perpendicular from the edge of its approximately circular shell. In a search with the Parkes telescope we have found a young and energetic pulsar that is located at the tip of this collimated linear structure. PSR J1437-5959 has period P = 61 ms, characteristic age tau_c = 114 kyr, and spin-down luminosity dE/dt = 1.4e36 erg/s. It is very faint, with a flux density at 1.4 GHz of about 75 uJy. From its dispersion measure of 549 pc/cc, we infer d ~ 8 kpc. At this distance and for an age comparable to tau_c, the implied pulsar velocity in the plane of the sky is V_t = 300 km/s for a birth at the center of the SNR, although it is possible that the SNR/pulsar system is younger than tau_c and that V_t > 300 km/s. The highly collimated linear feature is evidently the pulsar wind trail left from the supersonic passage of PSR J1437-5959 through the interstellar medium surrounding SNR G315.9-0.0.Comment: accepted for publication in ApJ Letter

    Computational methods for global/local analysis

    Get PDF
    Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods

    Discovery of the energetic pulsar J1747-2809 in the supernova remnant G0.9+0.1

    Get PDF
    The supernova remnant G0.9+0.1 has long been inferred to contain a central energetic pulsar. In observations with the NRAO Green Bank Telescope at 2 GHz, we have detected radio pulsations from PSR J1747-2809. The pulsar has a rotation period of 52 ms, and a spin-down luminosity of 4.3e37 erg/s, the second largest among known Galactic pulsars. With a dispersion measure of 1133 pc/cc, PSR J1747-2809 is distant, at ~13 kpc according to the NE2001 electron density model, although it could be located as close as the Galactic center. The pulse profile is greatly scatter-broadened at a frequency of 2 GHz, so that it is effectively undetectable at 1.4 GHz, and is very faint, with period-averaged flux density of 40 uJy at 2 GHz.Comment: minor changes from v1 - matches published versio

    Concurrent implementation of the Crank-Nicolson method for heat transfer analysis

    Get PDF
    To exploit the significant gains in computing speed provided by Multiple Instruction Multiple Data (MIMD) computers, concurrent methods for practical problems need to be investigated and test problems implemented on actual hardware. One such problem class is heat transfer analysis which is important in many aerospace applications. This paper compares the efficiency of two alternate implementations of heat transfer analysis on an experimental MIMD computer called the Finite Element Machine (FEM). The implicit Crank-Nicolson method is used to solve concurrently the heat transfer equations by both iterative and direct methods. Comparison of actual timing results achieved for the two methods and their significance relative to more complex problems are discussed
    • …
    corecore